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Business and Activity Section 

 
(a) Contract Activity 

No modifications were made to the contract.  

(b) Status Update of Past Quarter Activities 

Aim 1: We have coded new python scripts to generate databases of ultrasonic finite element 
simulations (FEA) of a three-dimensional plate geometry with embedded cracks of varying 
characteristics. Two databases have been created, with size and location as variables for each 
one. Ultrasound crack detection validation experiments were conducted. Training of two neural 
networks was performed in PyTorch and validated with experimental signal. Good accuracy was 
achieved for both size and location prediction. We have also started to develop steps that will be 
taken to extend our newly developed fundamental foundations to detect interacting anomalies 
considering crack with corrosion wall loss and crack in presence of another crack. We have also 
written a manuscript and submitted to a peer-reviewed journal for publication. This manuscript 
is titled “Finite element simulations and neural network based accurate crack size and location 
prediction for non-destructive ultrasounds.”  
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Aim 2: We have conducted literature study on GTN modeling for different grades of API 5L 
carbon steel and found calibrated parameters as well as experimental results for our research. As 
a  preliminary learning exercise, we also calibrated the GTN model for 316L steel which is 
typically used in LNG flexible pipes. We have performed FEA to validate GTN parameters for 
certain scenarios. We have been conducting literature review on Bayesian statistics for improved 
probabilistic failure predictions.  

 

Cost share activity 
 

Partial support for graduate student tuition was provided by Brown University School of 
Engineering as per the cost share agreement.   

 
1. Background and Objectives in the 5th Quarter 

 
1.1 Background 

According to the American Iron and Steel Institute (AISI), steel can be broadly 
categorized into four groups based on their chemical compositions: Carbon Steel, Alloy 
Steel, Stainless Steel and Tool Steel. Carbon steel pipes have the largest market share, as 
they can be used for many high and low-temperature applications. There are different 
specifications of carbon steels (such as A53, A333, A106, and API 5L). We have chosen 
API 5L because it is commonly used for line pipes used in oil and gas applications. The 
steel materials are also graded based on their mechanical properties. Most common grades 
of API 5L are API 5L GRB, X42, X52, X56, X60, X65, X70 and X80. Through literature 
study, we have identified the GTN parameters for the following materials. X60 carbon 
steel parameters were calibrated against experiment data in [1]; X65 carbon steel 
parameters were calibrated against experiment data in [2]; X70 carbon steel parameters 
were reported in [3]; X80 and X100 carbon steel parameters were calibrated against 
experiment data in [4]; a separate calibration for X65, X80 and X100 steel are calibrated 
in [5]. No record of calibrated GTN parameters for X52 steel were found, but experimental 
stress strain data with initiation of failure were found in [6]. Manual calibration can be 
accomplished by extracting the data from the article. 
 
The goal for all statistical inference is to determine the probability of the hypothesis given 
the data obtained. In addition to developing probabilistic failure methodology, we are 
additionally studying the role of Bayesian methods for pipeline failure predictions as 
unlike the conventionally used frequency based inference, Bayesian inference does not 
stop at simply validating a hypothesis. Using data along with our probabilistic pre-data 
hypothesis, Bayesian inference allows us to calculate a post-data hypothesis. 
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1.2 Objectives in the 5th Quarter 
Aim 1: During the last quarter, we have started to study the computationally and 
numerically challenging 3D embedded crack geometry (vs useful and computationally 
practical 2D cases). Our objectives in this quarter are: (1) create 3D ultrasonic finite 
element simulation capabilities and start preparing signal databases for single crack 
parameter predictions, (2) transition the neural network platform from MATLAB to 
PyTorch for increased versatility and capabilities, and (3) to conduct preliminary 
ultrasound NDT validation experiments. 
Aim 2: During the last quarter, we have conducted early failure analysis for a notched 
plate with ABAQUS embedded GTN model. Our objectives in this quarter are: (1) 
identify material data available in literature (which is included in 1.1, the background 
section), and (2) conduct additional GTN parameter calibration by comparing our finite 
element simulation against experiment data found in the literature.  

 
2.  Experimental and Computational Program in the 5th Quarter 

2.1 Experiments 

Olympus EPOCH 650 Digital Ultrasonic Flaw Detector was used to create ultrasonic 
signal. Figure 1 shows the 3D metal printed embedded crack steel test samples. Test 
sample #1 (mentioned in the previous quarterly report) was picked for validation 
experimental purposes. Figure 2 shows the received ultrasonic signal on the unit display 
and extracted digital data. 

Figure 1. 3D metal printed test samples with embedded cracks 

Figure 2. Left: Screenshot of experimental signal of testing sample #1 on EPOCH 650; 
right: acquired digital signal output from the unit (initial pulse removed) 
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2.2 Computational work 

All computations were conducted on workstation. All our numerical study used an 
ultrasound wave of 5 MHz frequency, in accordance with EPOCH 650 unit and 
wavelength of ~1.2 mm, the numerically stability requirement we obtained that 10-15 
meshes per wavelength provides a stable practical element size.  

A 3D steel flat pipe section geometry with length and width both being 40 mm and 
thickness 19 mm (~3/4 inch) was used in our new simulations. A 5 MHz raised-cosine 
type waveform was applied as boundary condition to the top surface of the simulated pipe. 
Profile for this waveform is shown in Figure 3. Step size is fixed at 2 × 10%& s which 
corresponds to a 500 MHz sampling rate. Anomalies in the form of embedded penny-
shaped cracks are placed in the middle of the plate. We conducted dynamic numerical 
simulations in Abaqus/Explicit. Displacement histories of a line of nodes are averaged to 
create the received signal. 

Figure 3. 5MHz, 2 period raised-cosine type pulse signal used in the simulations 
 
 

3. Results and discussion 

3.1 Technical approach and results: Aim 1 

Four crack parameters are identified: crack long axis (or size) 𝒂, crack short axis 𝒃, crack 
location in terms of the depth 𝒅, and the crack orientation 𝜽. Since the short axis is not as 
important as the other three parameters in terms of a structure’s failure behavior, we fix b 
= 0.6 mm for all simulations. 

Based on the parameters of test sample #1, we have purposely created 2 databases, one of 
which has the same size but varying location and the other same location but varying size. 
The information of the databases is summarized in Table 1. The goal of these two 
databases is for single crack parameter prediction which can be validated by sample #1. 

 



5  

Table 1. Summarize of databases and sample #1 with different parameters, bold 
numbers indicate a range in which the corresponding parameter varies 

 𝒂 (mm) 𝒃 (mm) 𝒚 (mm) 𝜽 Number of 
simulations 

Sample #1 
(experimental) 

4 0.6 12 0 NA 

Database 1 [1, 5] 0.6 12 0 235 
Database 2 4 0.6 [7, 15] 0 226 

Starting this quarter, we have been transitioning our neural network platform from 
MATLAB to PyTorch. Raw data formatting, wavelet packet transformation (WPT) and 
feature extraction are still performed in MATLAB, but the architecture of neural network 
as well as training and testing are performed using PyTorch. For these two databases, a 
three-layered neural network is utilized with 100 neurons in the hidden layer. 
Backpropagation with gradient descent algorithm is used to minimize loss function. The 
training of neural network is stopped once epoch exceeds 100000. 

In order to demonstrate the prediction capability with better visualization, for both 
databases the training data is 90% of the whole database and the rest 10% are treated as 
test data for which the following figures are plotted. In Figure 3, the testing data are 
plotted respectively for two neural networks trained with varying crack size and crack 
location. For both cases, the testing data are clustered near the black dashed line which 
represents perfect prediction. Size prediction is slightly better as almost all the data points 
line on the black line. 

 

Figure 3. Neural network performance on predicting crack size (left) and crack 
location/depth (right) for testing data. Black dashed line represents where perfect 

predictions should lie on. 

 



6  

We then evaluate the performance more rigorously using statistical properties. Mean 
absolute percentage error (MAPE) is defined as 

𝑴𝑨𝑷𝑬	 = 	
𝟏
𝑵45

𝒑𝒊 − 𝒕𝒊
𝒕𝒊

5
𝑵

𝒊:𝟏

 

where 𝒑𝒊  is the i-th predicted value and 𝒕𝒊  is the i-th target (actual) value. 𝑹𝟐  is the 
coefficient of determination that characterizes the degree of fitness. The performances of 
both neural networks are given in Table 2 and 3. For crack size prediction, MAPE is 
below 1% indicating highly accurate prediction. The trained neural network predicts a 
crack size of 3.93 mm for a testing sample of 4 mm, which has an error of only 1.7%. This 
validates our early research hypothesis that a simulation trained neural network is capable 
of handling experimental/real life  data. It is also the first reported validation experiment 
for a neural network that is trained with a three-dimensional crack database. For crack 
depth prediction, MAPE is 1.91% which is higher than crack size. The trained neural 
network predicts a crack depth of 12.59 mm for a testing sample of 12 mm, which has an 
error 4.91%.  

Table 2. Performance of trained neural network on testing data (simulation) and on 
experiment data for crack size prediction 

 

Table 3. Performance of trained neural network on testing data (simulation) and on 
experiment data for crack location prediction 

 

3.2 Discussion: Aim 1 

In this quarter, we have accomplished the objectives listed for aim 1. Three dimensional 
databases were created and used for training neural network. Especially, we have 
fundamentally demonstrated that a simulation-driven neural network is capable of 

Testing data  MAPE (%) R2 (%) 

0.36 99.99 

Experiment 
data 

Actual size (mm) Predicted size (mm) Relative error (%) 

4 3.93 1.7 

Testing data  MAPE (%) R2 (%) 

1.91 99.11 

Experiment 
data 

Actual depth (mm) Predicted depth (mm) Relative error (%) 

12 12.59  4.91 
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accurate prediction of crack parameters for experimental data. This is because our finite 
element simulation is correctly capturing all the physical phenomena of ultrasonic 
propagation and our feature extraction technique can preserve this information while 
reducing the input parameter space. However a major drawback is the time demand for 
creating a large database for 3D computational geometry. Since for multi-parameter 
prediction a much larger database is required, we need to further reduce the simulation 
time either by optimization of current methods or by introducing new fundamentals of 
within machine learning framework to relax the need for a large number of simulation 
requirements. This methodology currently does not exist and if achieved will be a 
fundamental important contribution that can be applied to a broad set of problems.  

 

3.3 Technical approach and result: Aim 2 

Tensile experiments on a round notched bar made of API 5L X65 grade steel are reported 
in [2]. Engineering stress against engineering strain is given until the complete failure of 
the bar. In the same literature, the GTN parameters are also calibrated against the 
experiments, and given below in Table 4. 

Table 4. Calibrated GTN parameters for X65 steel 

Porous material parameters 

𝒒𝟏 1.5 𝒒𝟐 1 

𝒒𝟑 2.25   

Void nucleation parameters 

𝒆𝑵 0.3 𝒔𝑵 0.1 

𝒇𝑵 0.0008 𝒇𝟎 0.000125 

Porous failure criteria 

𝒇𝒄 0.015 𝒇𝑭 0.25 

 

Following the experimental setup in [2], we use Abaqus and an inbuilt GTN model to 
conduct finite element simulation for a notched bar under tensile testing, and the results 
are plotted against experiment data in Figure 5. The simulation results matched well with 
the experiment data, showing that we have successfully been able to utilize GTN model 
for further application. The stress strain curves between GTN model and experiment are 
not exact after the onset of failure but have very similar trends. Moreover, we conducted a 
simulation for the same geometry with no fracture behavior (marked ‘Elasto-plastic’ in the 
figure. The result is exactly the same as GTN model until the onset of fracture,  
demonstrating capability of GTN to capture fracture physics within material. 
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Figure 5. Axisymmetric view of the notched bar with mesh (left) and simulation results 
with experiment data for the bar under tensile testing (right). 

 

3.4 Discussion: Aim 2 

We have demonstrated that our GTN model finite element simulation set-up gave results 
that reasonably agree with the experiment data using calibrated parameters. The time of 
onset of fracture can be predicted in the model as well as the mechanical behavior after 
it. This validation will enable us taking further steps into modeling pipeline with flaws 
and their bursting pressure/failure as a function of flaw parameters. 

The probabilistic framework essentially creates many different failure occurrences within 
a reasonable range dictated by the pipe failure model and creates a probability distribution 
from them. Using Bayesian inference that we are studying, it is possible to leverage real-
world pipe failure data to make our model more precise. Bayes’ law (see equation below) 
allows us to find the probability distribution of a hypothesis (such as burst pressure) from 
a set of data using a combination of statistics and our pre-data beliefs about this 
hypothesis.  

𝑷(𝒉𝒚𝒑𝒐𝒕𝒉𝒆𝒔𝒊𝒔	|	𝒅𝒂𝒕𝒂) 	= 	
𝑷(𝒅𝒂𝒕𝒂	|	𝒉𝒚𝒑𝒐𝒕𝒉𝒆𝒔𝒊𝒔) 	∗ 	𝑷(𝒉𝒚𝒑𝒐𝒕𝒉𝒆𝒔𝒊𝒔)

𝑷(𝒅𝒂𝒕𝒂)  

In the pipe failure model case, our pre-data beliefs would be the probability distribution 
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outputted by the probabilistic framework. Given more and more data, Bayesian inference 
can be used to make the probability distribution of a parameter more precise. As the 
amount of data grows there are fewer possible parameters which can produce it. Hence, 
we can narrow the uncertainty on a parameter using data. Using real pipe fracture data 
and Bayesian inference, it is possible to improve the precision of the probabilistic fracture 
prediction of our framework outputs. 

 

4. Future work 

We will create a database for crack orientation prediction. Further validation experiments will 
be carried out. In the near future, we aim to accomplish multiple crack parameter prediction 
for three dimensional cases. Databases will be created by simulation and validated by multiple 
samples that are available in the lab. During the course of this project, we plan to extend our 
newly developed foundations combining finite element simulations with neural network to 
detect interacting anomalies such as crack with corrosion wall loss and crack in presence of 
another crack. We will continue to calibrate GTN parameters for various steels of interest. 
We will create simulation and failure databases for flaws in pipes. For crack-like flaws and 
corrosion wall-loss flaws, geometric parameters such as crack size, crack location and wall 
loss depth will be variables in the database. Failure analysis will be performed for the database 
with a goal to create failure prediction curves/equations. In this project, we plan to implement 
a probabilistic prediction framework with a possibility of including Bayesian statistics.  
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